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AbstracL Pairing in a single-j shell is described in terms of two Q-oscillators, one describing 
the J = 0 fermion pairs and the other conesponding to the J # 0 pairs, the deformation 
parameter T = In Q being related to the inverse of the size of the shell. Using these two 
oscillators an SUp(2) algebra is constructed, while a pairing Hamiltonian aving the c o m t  
energy eigenvalues up to terms of first order in the small parameter can be written in terms of 
the Casimir operators of the algebras appearing in the up@) 3 Up(1) chain, thus exhibiting 
a quantum algebraic dynamical symmetry. The additional terms inwduced by the @oscillator 
are found to improve the agRement with the expeximental data for the neutron pak separation 
energies of the Sn isotope, with no e m a  parameter introduced. 

Quantum algebras (also called quantum proups) [ 1 4 1  have recently attracted much attention 
in physics, especially after the introduction of the q-deformed harmonic oscillator [5,6]. 
Applications in conformal field theory, quantum gravity, quantum optics, atomic physics, 
as well as in the description of spin chains have already been reported. In nuclear physics 
attention has been focused on the q-deformed rotator with SUg(2) symmetry and its use 
for the description of rotational spectra and B(E2) transition probabilities of deformed and 
superdeformed nuclei ([7,8] and references therein), as well as on the construction of exactly 
solvable nuclear models with quantum algebraic dynamical symmetries [9,10]. Similar 
efforts have been made for the description of rotational [ll-131 and vibrational ([14,15] 
and references therein) spectra of diatomic molecules. In many cases the deformation 
parameter 4 turns out to be related to some well defined physical quantity. In the case 
of the q-deformed rotator, for example, the deformation parameter has been related to the 
softness parameter of the variable moment of inertia (VMI) model [161. 

For nuclear physics the description of correlated fermion pairs in terms of q-deformed 
bosons is of particular interest for several reasons. Correlated fermion pairs in a single- j 
nuclear shell or several non-degenerate j shells ([I71 and references therein) are known 
to satisfy commutation relations which resemble boson commutation relations but contain 
corrections due to the presence of the Pauli principle. This fact has led to the development 
of boson mapping techniques for the description of many fermion systems (see [18] for 
an authoritative review). Boson mappings are of additional interest as a necessary tool in 
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building a bridge between the phenomenologically successful algebraic models of nuclear 
collective motion, such as the interacting boson model (IBM) ([19], see also [20, 211 for recent 
overviews) and the shell model. Since q-bosons also satisfy commutation relations different 
from the usual ones, it is reasonable to check to what extent correlated fermion pairs can be 
described in terms of q-deformed bosons. For fermion pairs of J = 0 this question has been 
answered in [22], where an approximate mapping of these fermion pair operators onto Q- 
bosons [23-251 has been constructed, which correctly reproduces the commutation relations 
and the pairing energies up to first order corrections in the small parameter T = In Q, which 
is related to the inverse of the size of the single-j shell, The same problem has been solved 
exactly in [26] through the use of a generalized deformed oscillator [27]. The extension of 
this formalism to pairs of J # 0 is of obvious interest, since the J # 0 pairs are known to 
play an important role in the formation of nuclear properties. 

In the present work a first step in this direction is taken. First, it is realized that for 
the description of pairing correlations in a single-j nuclear shell, it suf6ces to represent 
the J # 0 pairs by a Q-oscillator similar to the one used for the J = 0 pairs. The two 
oscillators are then used for building a quantum algebraic dynamical symmetry. Finally, the 
higher order terms introduced by the Q-oscillator are found to lead to improved agreement 
with the experimental data, without the introduction of any new parameter. 

In the usual formulation of the theory of pairing in a single-j shell [28], fermion pairs 
of angular momentum J = 0 are created by the pair-creation operators 

where a; are fermion-creation operators and 2S2 = 2 j  + 1 is the degeneracy of the shell. 
In addition, pairs of non-zero angular momentum are created by the S2 - 1 operators 

B$ = C ( - l ) ' + m ( j m j  - mlJO)a+ im a+ I-m (2) 

where ( jmj  - mlJO) are the usual Clebsch+ordan coefficients. The fermion number 
operator is defined as 

m>O 

The J = 0 pair-creation and annihilation operators satisfy the commutation relation 

N 
n [S. S+] = 1 - P (4) 

while the pairing Hamiltonian is 

H = -GQS+S.  (5) 

The seniority VF is defined as the number of fermions not coupled to J = 0. If only pairs 
of J = 0 are present (i.e. VF = 0), the eigenvalues of the Hamiltonian are 
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For non-zero seniority, the eigenvalues of the Hamiltonian are 

1301 

(7) 
G 
4 

E(N.r, VF)  = - - (NF - V F ) ( ~ Q  - N F  - VF + 2). 

For simplicity, we denote the operators N F ,  VF and their eigenvalues by the same symbol. 
It has been proved [22] that the behaviour of the J = 0 pairs can be described, up 

to first-order corrections, in terms of Q bosons. Q bosons [23-25] are defined by the 
commutation relations 

[ N ,  b+] = b+ [ N ,  b] = -b bb+ - Qb+b = 1 (8) 

where b+ (b) are Q-boson creation (annihilation) operators and N is the relevant number 
operator. Q-numbers [2%25] are defined as 

For Q = eT their Taylor expansion is 

(10) 
T TZ T 3  

. 2  12 24 [X]Q = x + - (x2 - X )  + -(2N3 - 3N2 + 1) + - (N4 - 2N3 + N 2 )  + . .. . 
One can then easily see that 

b'b = [NIQ bb+ = [ N  + I]Q. (11) 

Making the mapping 

S++b+ S - t b  NF 3 2N (12) 

the Hamiltonian of equation (5) becomes 

H(N, v = 0) = -GQb+b = - G ~ [ N ] Q .  (13) 

Using equation (10) we see that it coincides with equation (6) up to first-order corrections in 
the small parameter, which is identified as T = - 2 / Q .  Furthermore, the Q bosons satisfy 
the commutation relation 

which coincides with equation (4) up to first-order corrections in the small parameter, which, 
consistently with the above finding, is identified as T = - 2 / Q .  Therefore, the fermion 
pairs of J = 0 can be approximately described as Q bosons, which correctly reproduce both 
the pairing energies and the commutation relations up to first-order corrections in the small 
parameter. 

For the case of non-zero seniority, one observes that equation (7) can be written as 
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that is, it can be separated into two parts, formally identical to each other. Since the second 
part (which corresponds to the J = 0 pairs) can be adequately described by the Q bosons 
b, b+ and their number operator N, as we have already seen, it is reasonable to assume 
that the first part can also be described in terms of some Q bosons d ,  d+ and their number 
operator V (with V, -+ 2V) satisfying commutation relations similar to equation (8): 

[V, d'] = d+ [V, d ]  = -d dd+ - Qd'd = 1. (16) 

From the physical point of view this description means that a set of Q bosons is used for 
the J = 0 pairs and another set for the J # 0 pairs. h e  latter is reasonable, since in the 
context of this theory the angular momentum value of the J # 0 pairs is not used explicitly. 
The J # 0 pairs are just counted separately from the J = 0 pairs. A Hamiltonian giving 
the same spectrum as in equation (15), up to first-order corrections in the small parameter, 
can then be written as 

x(N, v) = GQ([VIQ - [ N ~ Q ) .  (17) 

Using equation (lo), it is easy to see that this'expression agrees with equation (15) up to 
first-order corrections in the small parameter T = -2/Q. 

Two comments concerning equation (17) are in order: . 
(i) In the classical theory states of maximum seniority (i.e. states with N = V) have 

zero energy. This is also holding for the Hamiltonian of equation (17) to all orders in the 
deformation parameter. 

(ii) A landmark of the classical theory is that E ( N ,  V) - E ( N ,  V = 0) is independent 
of N .  This also holds for equation (17) to all orders in the deformation parameter. 

Knowing the Schwinger realization of the SU&) algebra in terms of q bosons [5 ,6] ,  one 
may wonder if the operators used here close an algebra. It is easy to see that the operators 
b+d, d+b and N - V do not close an algebra. Considering, however, the operators [29] 

(18) 
1 
2 

J+ = b+Q-'fld J- = d+Q-'i2b JD = - ( N  - V )  

one can easily see that they satisfy the commutation relations [29,30] 

[Jo, J*] = zkJ* J+J- - Q-'J-J+ = [ ~ J o ] Q .  (19) 

Using the emsformation 

(20) j0 = jo J+ = Q ( 1 / 2 ) ( f O - l f l ) j +  J- = j - Q ( l / Z ) ( f o - - ' / Z )  

one goes to the usual SUq(2) commutation relations 

[jO, LI = && I.?+, j-I  = [2&iq 

where q-numbers are defined as 

and q2 = Q. 
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It is clear that N + V is .the first-order Casimir operator of the uQ(2) algebra formed 
above (since it commutes with all the generators given in equation (IS)), while N - V is 
the first-order Casimir operator of its Up(1) subalgebra, which is generated by JO alone. 
Therefore the Hamiltonian of equation (17) can be expressed in terms of the Casimir 
operators of the algebras appearing in the chain Up(2) 2 UQ(1) as 

that is, the Hamiltonian has a uQ(2) 2 uQ(1) dynamical symmetry. 
In [31] a q-deformed version of the pairing theory was assumed, with satisfactory results 

when compared to experimental data. The present construction offers some justification for 
this assumption, since. in both cases the basic ingredient is the modification of equation (4). 
It should be noticed, however, that the deformed version of equation (4) considered in [31] 
is different from the one obtained here (equation (14)). A basic difference is that in [31] 
the deformed theory reduces to the ciassical theory for q + 1, so that q-deformation is 
introduced in order to describe additional correlations, while in the present formalism the Q- 
oscillators involved for Q --f 1 reduce to usual harmonic oscillators, so that Q-deformation 
is introduced in order to attach to the oscillators the anharmonicity needed by the energy 
expression (equation (6)). 

In the construction given above we have shown that Q bosons can be used for the 
approximate description of correlated fermion pairs in a single-j shell. The results obtained 
in the Q-formalism agree to theclassical (non-deformed) results up to first-order corrections 
in the small parameter. However, the Q-formalism contains in addition higher-order terms. 
The question then arises whether these additional terms are useful or not. To answer this 
question, the simplest comparison with experimental data which can be made concerns the 
classic example of the neutron pair separation energies of Sn isotopes used by Talmi 132,331. 

In Talmi's formulation of the pairing theory, the energy of the states with zero seniority 
is given by [32,33] 

where N is the number of fermion pairs ana VO, A are constants. We remark that this 
expression is the same as the one in equation (6), with the identifications 

A/(ZVo) = - I /Q A = 2G N.n = 2 N .  (25) 

The neutron pair separation energies are given by 

A E ( N  + I),[ = E ( N  + - E(N)ci = Vo 1 + -N  . (26) 

Thus the neutron pair separation energies are expected to decrease linearly with increasing 
N .  (Note from equation (25) that A / V o  < 0, since S2 > 0.) 

( 3 
In our formalism the neutron pair separation energies are given by 

A E ( N  + 1 ) ~  = -GQ([N + I ] Q  - [ N ] Q )  = -GC2QN = -GC2eTN. (27) 
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lsble 1. Neutron pair separation energies AE (in keV) for the Sn isotopes. N is the number 
of valence neutro" pairs. Experimental data (denoted by exp) are taken from [34]. The fits 
obtained with e q d o n  (27) are denoted by Q, while lhe fits obtained with equation (26) are 
denoted by cl. The parameter values obtained in each fit as well as the quality measures of 
equations (28), (29) are also given. 

Nucleus N AE AE AE InAE InAE InAE 

"Sn 2 7.2820 22778 7.2277 10.035 10.029 10.000 
1% 3 21960 21767 21503 9.997 9.985 9.966 

%n 5 I9900 19878 19954 9.898 9.895 9.894 
6 18967 18995 19179 9.850 9.851 9.856 

"4s" 7 ISM6 18152 18405 9.801 9.806 9.817 
8 17109 17347 17630 9.747 9.761 9.776 

"8Sn 9 16271 16577 16856 9.697 9.716 9.733 

lzzSll 11 14987 15138 15307 9.615 9.627 9.641 
12 14443 I4466 14532 9578 9.582 9.592 

12%n 13 13926 13824 13757 9542 9.538 9.541 
'2%" 14 13560 13210 12983 9515 9.493 9.486 
%" 15 12900 12624 12208 9.465 9.448 9.429 
T -0.0454 -0,0447 

-GQ (keV) 23836 23718 
A/ Vo -0.0336 -0.0324 
vo (kv) 23052 22766 
10% (kevy 5.18 25.30 
10-3d (keV)2 2.13 9.18 

~ X P  Q cl =P Q cl 

%in 4 20950 20a01 20728 9.950 9.940 9.931 

'2% IO 15592 15841 1m81 9.655 9.672 9.688 

Since, as we have seen, T is expected'to be -Z/S2, that is, negative and small, the neutron 
pair separation energies are. expected to fall exponentially with increasing N but the small 
value of T can bring this exponential fall very close to a linear one. 

In table 1 the neutron pair separation energies of the even Sn isotopes from '%n to 
13'Sn (i.e. across the whole sdg neutron shell) are shown. We have performed a least- 
squares fitting of the energies using both theories. The quality of the fit was measured 
by 

n 
u = x(AEi(exp)  - AEi(th))' 

l=I 

that is, by the sum of the squares of the differences between the experimental and theoretical 
values. Furthermore, we have performed a least-squares fit of the logarithms of the energies, 
since equation (27) predicts a linear decrease of the logarithm of the energies with increasing 
N. In this case the quality of the fit is measured by 

n 
c' = c ( l n  AEi(exp) - In AEi(th))'. 

i=l 

Both fits give almost identical results. Equation (27) (in which the free parameters are GS2 
and T), gives a better result than equation (26) (in which the free parameters are Vo and 
A / V,) for every single isotope, without introducing any additional parameter; this is an 
indication that higher-order terms can be useful. 
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One should remark, however, that '%n lies in the middle of the sdg neutron shell. If we 
fit the isotopes in the lower half of the shell ("Sn to and those in the upper half of 
the shell ('I% to I3OSn) separately, we find that both theories give indistinguishably good 
results in both regions. Therefore Q-deformation can be understood as expressing higher- 
order correlations which manifest themselves in the form of particle-hole asymmetry. 

We have also attempted a fit of the neutron pair separation energies of the Pb isotopes 
from ls6Pb to mzPb. In this case both theories give indistinguishably good fits. This result 
is in agreement with the Sn findings, since all of these Pb isotopes lie in the upper half of 
the pfh neutron shell. Unfortunately, no neutron pair, separation energy data exist for Pb 
isotopes in the lower part of the pfh neutron shell. 

Concerning the values of T obtained in the case of the Sn isotopes (T = -0.0454, 
= -0.0447), we observe that they are slightly smaller than the value (T = -0.0488) which 
would have been obtained by considering the neutrons up to the end of the sdg shell as lying 
in a single-j shell. This is, of come,  a very gross approximation which should not be taken 
too seriously. However, in the case of the Pb isotopes mentioned above, the best fit was 
obtained with T = -0.0276, which is again slightly smaller than the value of T -0.0317 
which corresponds to considering all the neutrons up to the end of the pf i  shell as lying in 
a single-j shell. 

In conclusion, we have shown that pairing in a single-j shell can be described, up to 
first-order corrections, by two Q-oscillators, one describing the J = 0 pairs and the other 
corresponding to the J f 0 pairs, the deformation parameter T = In Q being related to the 
inverse of the size of the shell. These two oscillators can be used for forming an SUQQ 
algebra. A Hamiltonian giving the correct pairing energies up to first-order corrections in the 
small parameter can be written in terms of the Casimir operators of the algebras appearing 
in the U Q ( ~ )  3 UQ(1) chain, thus exhibiting a quantum algebraic dynamical symmetry. 
The additional terms introduced by the Q-oscillators serve in improving the description of 
the neutron pair separation energies of the Sn isotopes, with no extra parameter introduced. 

In [26] a generalized deformed oscillator describing the correlated fermion pairs of 
J = 0 exactly has been introduced. This generalized deformed oscillator is the same as 
the one giving the same spectrum as the Morse potential 1351, up to a shift in the energy 
spectrum. The use of two generalized deformed oscillators for the description of J = 0 
pairs and J # 0 pairs in a way similar to the one of the present work is easy, while the 
construction out of them of a closed algebra analogous to the suQ(2)  obtained here is an 
open problem. The extension of the ideas presented here to the case of the BCS theory is 
under investigation. 

One of the authors @B) is grateful to J N Ginocchio for useful discussions. Support 
from the DFG under contract No FA6'7/14-1 and the EC under contract number SC1'/0131-C 
are gratefully acknowledged. 
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